Section 3:Lecture 8

- Polymorphism

Object-Oriented Concept

* Encapsulation
— Abstract Data Type (ADT), Object

* Inheritance
— Derived object
* Polymorphism
— Each object knows what it is

Polymorphism — An Introduction

e Definition
— noun, the quality or state of being able to
assume different forms - Webster

* An essential feature of an OO Language
* It builds upon Inheritance

Before We Proceed...

* Inheritance — Basic Concepts

— Class Hierarchy
« Code Reuse, Easy to maintain

— Type of inheritance : public, protected, private
— Function overriding

class Time Specification

/| SPECIFICATION FILE (time.h)
class Time
{
public :

void Set (int h, intm, ints) :
void Increment () :
void Write () const ;
Time (int initH, int initM, int initS) ;

Time ()
protected :

int hrs

int mins ;

int secs ;

Derived Class ExtTime

// SPECIFICATION FILE (exttime.h)
#include “time.h"
enum ZoneType {EST, CST, MST, PST,EDT, CDT, MDT,PDT };

class ExtTime : public Time

{

public :
void Set (int h, int m, int s, ZoneType timeZone) ;
void Write () const; //overridden
ExtTime (int initH, int initM, int initS, ZoneType initZone) ;
ExtTime ();

private :
ZoneType zone ; // added data member

Class Interface Diagram
ExtTime class

m ‘w Protected data:
nrs [
_y—
L g

Private data;
zone

Why Polymorphism?--Review:
Time and ExtTime Example by Inheritance

void Print (Time someTime) //pass an object by value
{
cout << “"Timeis " ;
someTime.Write () : // Time :: write()
cout << endl ;
}
_ CLIENT CODE
Time startTime (8, 30, 0) ; OUTPUT

ExtTime endTime (10, 45, 0, CST) ;
Time is 08:30:00
Print (startTime) : Time is 10:45:00
Print (endTime) ;

Static Binding

* When the type of a formal parameter is a parent class,
the argument used can be:

the same type as the formal parameter,
or,
any derived class type.

 Static binding is the compile-time determination of which
function to call for a particular object based on the type of
the formal parameter

* When pass-by-value is used, static binding occurs

Can We Do Better?

void Print (Time someTime)
{
cout << "Timeis " ;
someTime.Write () ;
cout << endl ;

//pass an object by value

// Time :: write()

CLIENT CODE

Time startTime (8, 30, 0) ;
ExtTime

Print (startTime)
Print (endTime) :

endTime (10, 45, 0, CST) ;

OUTPUT

Time is 08:30:00
Time is 10:45:00

Polymorphism — An Introduction

Definition

— noun, the quality or state of being able to
assume different forms - Webster

An essential feature of an OO Language

It builds upon Inheritance

Allows run-time interpretation of object type for a
given class hierarchy

— Also Known as “Late Binding”
* Implemented in C++ using virtual functions

Dynamic Binding

* Is the run-time determination of which function to call
for a particular object of a derived class based on the

type of the argument

* Declaring a member function to be virtual instructs
the compiler to generate code that guarantees

dynamic binding
« Dynamic binding requires pass-by-reference

Virtual Member Function

// SPECIFICATION FILE (time.h)
class Time
{
public :
\./ir‘.rua.l void Whrite () . // for dynamic binding
virtual ~Time(); // destructor
private :
int hrs ;
int mins ;
int secs ;

}

This is the way we like to see...

void Print (Time * someTime)

{

cout << "Timeis "
someTime->Werite () :
cout << endl :

}
CLIENT CODE

Time startTime(8,30,0);
ExtTime endTime(10,45,0,CST);

Time *timeptr;
Timeptr = &startTime;

OUTPUT

Time is 08:30:00
Time is 10:45:00 CST

Print (timeptr) ;

timeptr = &endTime;
Print (timeptr) ;

> Time::write()

» ExtTime::write()

Virtual Functions

Virtual Functions overcome the problem of run time object
determination

Keyword virtual instructs the compiler to use late binding and delay
the object interpretation

How ?

— Define a virtual function in the base class. The word virtual appears only in the
base class

— If a base class declares a virtual function, it must implement that function, even
if the body is empty

— Virtual function in base class stays virtual in all the derived classes

— It can be overridden in the derived classes

— But, a derived class is not required to re-implement a virtual function. If it does
not, the base class version is used

Polymorphism Summary

When you use virtual functions, compiler store additional

Information about the types of object available and
Created

Polymorphism is supported at this additional overhead
Important :

— virtual functions work only with pointers/references

— Not with objects even if the function is virtual

— If a class declares any virtual methods, the destructor of the class
should be declared as virtual as well.

Abstract Classes & Pure Virtual Functions

e Some classes exist logically but not physically.
e Example : Shape
— Shape s; // Legal but silly..!! : "Shapeless shape”

— Shape makes sense only as a base of some classes
derived from it. Serves as a “category”

- Hence instantiation of such a class must be prevented

class Shape //Abstract « A class with one or more pure

{ _ virtual functions is an Abstract
public : Class
//Pure virtual Function _ ,
virtual void draw() = O; e Objects of abstract class can’t be

) created

Shape s; // error : variable of an abstract class

e A pure virtual function not defined in the
derived class remains a pure virtual function.

e Hence derived class also becomes abstract

class Circle : public Shape { //No draw() - Abstract
public :
void print(){
cout <<« "I am a circle" <« endl;

}
class Rectangle : public Shape {
public :
void draw(){ // Override Shape::draw()
cout << "Drawing Rectangle” << end|;
}
Rectangle r; // Valid

Circle c; // error : variable of an abstract class

Pure Virtual Functions: Summary

« Pure virtual functions are useful because they
make explicit the abstractness of a class

« Tell both the user and the compiler how it was
Intended to be used

* Note : It iIs a good idea to keep the common code
as close as possible to the root of you hierarchy

class Shape { //Abstract

Summary — Cont'd

It is still possible to provide definition of a pure virtual function
In the base class

The class still remains abstract and functions must be
redefined in the derived classes, but a common piece of code
can be kept there to facilitate reuse

In this case, they can not be declared inline

class Rectangle : public Shape

public :
virtual void draw() = 0; {
X public :
‘ o void draw(){
// OK, not defined inline Shape::draw(); //Reuse
void Shape::draw() cout «"Rectangle"« endl;
cout << "Shape" <« endl;)

}

Take Home Message

* Polymorphism is built upon class
inheritance

- It allows different versions of a
function to be called in the same
manner, with some overhead

* Polymorphism is implemented with
virtual functions, and requires pass-by-
reference

