
Section 3:Lecture 8

- Polymorphism

Object-Oriented Concept

• Encapsulation

– Abstract Data Type (ADT), Object

• Inheritance

– Derived object

• Polymorphism

– Each object knows what it is

Polymorphism – An Introduction

• Definition

– noun, the quality or state of being able to

assume different forms - Webster

• An essential feature of an OO Language

• It builds upon Inheritance

Before We Proceed…

• Inheritance – Basic Concepts

– Class Hierarchy

• Code Reuse, Easy to maintain

– Type of inheritance : public, protected, private

– Function overriding

class Time Specification

class Time

{

 public :

 void Set (int h, int m, int s) ;

 void Increment () ;

 void Write () const ;

 Time (int initH, int initM, int initS) ;
 Time () ;

 protected :

 int hrs ;

 int mins ;

 int secs ;

} ;

// SPECIFICATION FILE (time.h)

Derived Class ExtTime
// SPECIFICATION FILE (exttime.h)

#include “time.h”

enum ZoneType {EST, CST, MST, PST, EDT, CDT, MDT, PDT } ;

class ExtTime : public Time

{

 public :

 void Set (int h, int m, int s, ZoneType timeZone) ;

 void Write () const; //overridden

 ExtTime (int initH, int initM, int initS, ZoneType initZone) ;
 ExtTime ();

 private :
 ZoneType zone ; // added data member

} ;

 Class Interface Diagram

Protected data:

hrs

mins

secs

ExtTime class

Set

Increment

Write

 Time

Time

Set

Increment

Write

 ExtTime

ExtTime

Private data:

zone

Why Polymorphism?--Review:
Time and ExtTime Example by Inheritance

void Print (Time someTime) //pass an object by value
{
 cout << “Time is “ ;
 someTime.Write () ;
 cout << endl ;
}

CLIENT CODE

Time startTime (8, 30, 0) ;
ExtTime endTime (10, 45, 0, CST) ;

Print (startTime) ;
Print (endTime) ;

 OUTPUT

 Time is 08:30:00
 Time is 10:45:00

// Time :: write()

Static Binding

• When the type of a formal parameter is a parent class,

the argument used can be:

 the same type as the formal parameter,

 or,

 any derived class type.

• Static binding is the compile-time determination of which

function to call for a particular object based on the type of

the formal parameter

• When pass-by-value is used, static binding occurs

Can We Do Better?

void Print (Time someTime) //pass an object by value
{
 cout << “Time is “ ;
 someTime.Write () ;
 cout << endl ;
}

CLIENT CODE

Time startTime (8, 30, 0) ;
ExtTime endTime (10, 45, 0, CST) ;

Print (startTime) ;
Print (endTime) ;

 OUTPUT

 Time is 08:30:00
 Time is 10:45:00

// Time :: write()

Polymorphism – An Introduction

• Definition

– noun, the quality or state of being able to

assume different forms - Webster

• An essential feature of an OO Language

• It builds upon Inheritance

• Allows run-time interpretation of object type for a

given class hierarchy

– Also Known as “Late Binding”

• Implemented in C++ using virtual functions

Dynamic Binding

• Is the run-time determination of which function to call

for a particular object of a derived class based on the

type of the argument

• Declaring a member function to be virtual instructs

the compiler to generate code that guarantees

dynamic binding

• Dynamic binding requires pass-by-reference

Virtual Member Function

// SPECIFICATION FILE (time.h)

class Time
{
public :
 . . .
 virtual void Write () ; // for dynamic binding
 virtual ~Time(); // destructor

private :

 int hrs ;
 int mins ;
 int secs ;
} ;

This is the way we like to see…

 void Print (Time * someTime)
 {
 cout << “Time is “ ;
 someTime->Write () ;
 cout << endl ;
 }

CLIENT CODE

Time startTime(8, 30, 0) ;
ExtTime endTime(10, 45, 0, CST) ;

Time *timeptr;
timeptr = &startTime;
Print (timeptr) ;

timeptr = &endTime;
Print (timeptr) ;

 OUTPUT

 Time is 08:30:00
 Time is 10:45:00 CST

Time::write()

ExtTime::write()

Virtual Functions

• Virtual Functions overcome the problem of run time object

determination

• Keyword virtual instructs the compiler to use late binding and delay

the object interpretation

• How ?

– Define a virtual function in the base class. The word virtual appears only in the

base class

– If a base class declares a virtual function, it must implement that function, even

if the body is empty

– Virtual function in base class stays virtual in all the derived classes

– It can be overridden in the derived classes

– But, a derived class is not required to re-implement a virtual function. If it does

not, the base class version is used

Polymorphism Summary

• When you use virtual functions, compiler store additional

information about the types of object available and

created

• Polymorphism is supported at this additional overhead

• Important :

– virtual functions work only with pointers/references

– Not with objects even if the function is virtual

– If a class declares any virtual methods, the destructor of the class

should be declared as virtual as well.

Abstract Classes & Pure Virtual Functions

class Shape //Abstract
{
 public :
 //Pure virtual Function
 virtual void draw() = 0;
}

• A class with one or more pure

virtual functions is an Abstract
Class

• Objects of abstract class can’t be
 created

Shape s; // error : variable of an abstract class

• Some classes exist logically but not physically.

• Example : Shape

– Shape s; // Legal but silly..!! : “Shapeless shape”

– Shape makes sense only as a base of some classes
derived from it. Serves as a “category”

– Hence instantiation of such a class must be prevented

Example

Shape

 virtual void draw()

Circle

public void draw()

Triangle

public void draw()

• A pure virtual function not defined in the
derived class remains a pure virtual function.

• Hence derived class also becomes abstract

class Circle : public Shape { //No draw() - Abstract
public :
void print(){
 cout << “I am a circle” << endl;
}

class Rectangle : public Shape {
public :
void draw(){ // Override Shape::draw()
 cout << “Drawing Rectangle” << endl;
}

Rectangle r; // Valid
Circle c; // error : variable of an abstract class

Pure Virtual Functions: Summary

• Pure virtual functions are useful because they

make explicit the abstractness of a class

• Tell both the user and the compiler how it was

intended to be used

• Note : It is a good idea to keep the common code

as close as possible to the root of you hierarchy

Summary – Cont’d

• It is still possible to provide definition of a pure virtual function
in the base class

• The class still remains abstract and functions must be
redefined in the derived classes, but a common piece of code
can be kept there to facilitate reuse

• In this case, they can not be declared inline

class Shape { //Abstract
public :
 virtual void draw() = 0;
};

// OK, not defined inline
void Shape::draw(){
 cout << “Shape" << endl;
}

class Rectangle : public Shape

{
 public :
 void draw(){
 Shape::draw(); //Reuse
 cout <<“Rectangle”<< endl;
}

Take Home Message

• Polymorphism is built upon class
inheritance

• It allows different versions of a
function to be called in the same
manner, with some overhead

• Polymorphism is implemented with
virtual functions, and requires pass-by-
reference

